Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 32(8): 2703-2712, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34664442

RESUMO

To understand the effects of straw return modes on soil carbon pools, we investigated total soil organic carbon (SOC), labile organic carbon fractions, and inorganic carbon (SIC) in different straw return modes at a depth of 0-40 cm under a maize-wheat cropping system in the Guanzhong Plain, Shaanxi, based on an 11-year field experiment. There were five straw return modes, i.e., no return of straw of both wheat and maize (CK), the retention of high wheat stubble plus the return of chopped maize straw (WH-MC), the return of both chopped wheat and maize straw (WC-MC), the retention of high wheat stubble and no return of maize straw (WH-MN), and the return of chopped wheat straw and no return of maize straw (WC-MN). The proportions of SOC storage were significantly higher under the WH-MC and WC-MC treatments than that under the CK by 28.1% and 22.2%, respectively. The proportions of SIC storage were increased by 20.4% and 17.3%, respectively. Compared with the initial value, the increases of sequestered SOC and SIC ranged from -0.84 t·hm-2 to 6.55 t·hm-2, respectively, and from -0.26 t·hm-2 to 8.61 t·hm-2, respectively. The efficiency of sequestration of SOC was 7.5%. To maintain the basic SOC level, the minimum carbon input from straw was 4.65 t·hm-2·a-1. The contents of labile carbon fractions at the 0-20 cm layer increased significantly under the WH-MC and WC-MC treatments compared with those of the control. Results of principal component analysis showed that the changes in soil carbon pools were primarily affected by the amount of straw return. Additionally, the increases in SIC storage could be ascribed to the Ca2+ and Mg2+ ions derived from irrigation water and plant residues that could coprecipitate with the CO2 from SOC mineralization to form CaCO3. In conclusion, our results indicated that the straw return mode that utilized the retention of high wheat stubble and chopped maize straw was sufficient to maintain soil carbon storage and would be the optimal straw-returning strategy for the region.


Assuntos
Solo , Triticum , Agricultura , Carbono/análise , China , Zea mays
2.
Ying Yong Sheng Tai Xue Bao ; 30(8): 2737-2745, 2019 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-31418199

RESUMO

To investigate the changes of Zn availability and transformation in calcareous soil, orga-nic materials (maize straw, biofertilizer, fulvic acids, and chicken manure) were thoroughly mixed with the soils amended with Zn fertilizer in the nylon net bags and buried in a field. Results showed that compared with control (neither Zn nor organic materials), Zn fertilizer alone and combined addition with organic materials significantly increased soil total Zn concentration (7.2%-13.8%) and DTPA-Zn concentration (2.1-2.8 folds). For the Zn amended treatments, the contributions of organic amendments to soil total Zn and DTPA-Zn concentration decreased in the order of chicken manure > biofertilizer > maize straw > fulvic acids. The highest conversion rate of exogenous Zn into DTPA-Zn occurred in the treatments with straw and biofertilizer. In comparison with single Zn application, combination of Zn fertilizer with organic materials increased soil organic matter and stimulated more Zn weakly bound to organic matter, enhanced mobility factor and reduced distribution index of Zn in soil. The differences in soil Zn availability and transformation among the combinations of Zn fertilizer and organic materials were likely linked to the inherent properties of organic materials such as maturity degree and Zn content. Considering the environment safety and cost reduction, combining Zn fertilizer and straw return was the best practice to enhance Zn availability in the Zn-deficient calcareous soil, although its contribution to Zn availability was less than the combination of biofertilizer or chicken manure with Zn fertilizer.


Assuntos
Fertilizantes , Poluentes do Solo , Zinco/química , Esterco , Solo/química
3.
Ying Yong Sheng Tai Xue Bao ; 27(4): 1196-1202, 2016 Apr 22.
Artigo em Chinês | MEDLINE | ID: mdl-29732776

RESUMO

A 52-day incubation experiment was conducted to investigate the effects of maize straw decomposition with combined medium element (S) and microelements (Fe and Zn) application on arable soil organic carbon sequestration. During the straw decomposition, the soil microbial biomass carbon (MBC) content and CO2-C mineralization rate increased with the addition of S, Fe and Zn, respectively. Also, the cumulative CO2-C efflux after 52-day laboratory incubation significantly increased in the treatments with S, or Fe, or Zn addition, while there was no significant reduction of soil organic carbon content in the treatments. In addition, Fe or Zn application increased the inert C pools and their proportion, and apparent balance of soil organic carbon, indicating a promoting effect of Fe or Zn addition on soil organic carbon sequestration. In contrast, S addition decreased the proportion of inert C pools and apparent balance of soil organic carbon, indicating an adverse effect of S addition on soil organic carbon sequestration. The results suggested that when nitrogen and phosphorus fertilizers were applied, inclusion of S, or Fe, or Zn in straw incorporation could promote soil organic carbon mineralization process, while organic carbon sequestration was favored by Fe or Zn addition, but not by S addition.


Assuntos
Sequestro de Carbono , Produtos Agrícolas , Fertilizantes , Solo/química , Agricultura , Biomassa , Carbono , Ferro , Nitrogênio , Fósforo , Enxofre , Zea mays , Zinco
4.
Ying Yong Sheng Tai Xue Bao ; 26(4): 1215-22, 2015 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-26259466

RESUMO

A four-year (2008-2012) field experiment was conducted to investigate the effects of different straw-returning regimes on soil total organic carbon (TOC), labile organic carbon (LOC) and the ratio of LOC to TOC (LOC/TOC) as well as TOC stock (SCS) and soil carbon pool management index (CPMI) in a farmland with maize-wheat double cropping system in Guanzhong Plain area, Shaanxi Province, China. The results indicated that soil TOC and LOC contents and SCS were significantly increased when wheat or maize straw was returned to field, and the increasing extent showed the rising order as follows: double straw-returning > single straw-returning > no straw-returning. Compared to no straw returning, a significant increase of TOC and LOC contents and SCS was found in the treatment of wheat straw chopping retention combined with maize straw chopping subsoiling retention (WC-MM), and CPMI of WC-MM was significantly higher than in the other treatments in 0-20 cm soil layer. Compared to no wheat straw returning, soil CPMIs in 0-10 cm and 10-20 cm soil layer increased by 19.1% and 67.9% for the wheat straw chopping returning treatment, and by 22.6% and 32.4% for the maize straw chopping subsoiling treatment, respectively. Correlation analysis showed that soil CPMI was a more effective index reflecting the sequestration of soil organic carbon in 0-30 cm soil layer than the ratio of LOC to TOC. This study thus suggested that WC-MM regime is the best straw-returning regime for soil organic carbon sequestration.


Assuntos
Agricultura/métodos , Sequestro de Carbono , Solo/química , Carbono/análise , China , Caules de Planta , Triticum , Zea mays
5.
Ying Yong Sheng Tai Xue Bao ; 26(11): 3322-8, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26915186

RESUMO

Soil stratified sampling method and potassium chemical fractionation analysis were used to investigate effects of long-term shallow tillage and straw returning on soil K contents and stratification ratios in winter wheat/summer maize rotation system in Guanzhong Plain of Northwest China. The results showed that after 13-year continuous shallow tillage and straw returning, surface accumulation and stratification effect obviously occurred for soil available K (SAK) and non-exchangeable K (NEK), which was particularly remarkable for SAK and its fractions. Serious depletion of SAK occurred in 15-30 cm soil layer, and the SAK value was lower than the critical value of soil potassium deficiency. Meanwhile, significant differences were found between SR1 and SR2 values of SAK and its fractions, SR was obtained by values of topsoil layer (0-5 cm) divided by corresponding values of lower soil layers (5-15 cm layer, SR1, or 15-30 cm layer, SR2). However, no significant difference was observed between SR values of NEK and mineral K. In conclusion, returning of all straw over 10 years in the winter wheat/summer maize rotation system contributed greatly to maintaining soil K pool balance, while special attention should be paid to the negative effects of surface accumulation and stratification of SAK on soil K fertility.


Assuntos
Agricultura/métodos , Potássio/análise , Solo/química , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...